بیان ژن IGF-I در عضله سینه و ارتباط آن با وزن بدن در نژادهای بلدرچین ژاپنی و مانچوریا

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسنده

استادیار، گروه علوم دامی، آموزشکده کشاورزی رضوان، دانشگاه فنی و حرفه ای استان کرمان، ایران

چکیده

در این پژوهش، برای بررسی ارتباط بین وزن ۷‌روزگی و بیان ژن IGF-I در سن ۳۵ روزگی در عضلات سینه بلدرچین، از ۱۵۰ نژاد بلدرچین مانچوریا و ۱۵۰ نژاد بلدرچین ژاپنی در قالب طرح بلوک کاملاً تصادفی استفاده شد. روز هفتم پرورش، جوجه بلدرچین‌ها وزن شد و هر کدام از نژادها به دو گروه سبک و سنگین تقسیم شدند. میزان بیان ژن IGF-I در روز ۳۵ پرورش در عضلات سینه این دو نژاد بلدرچین به روش Real time PCR مورد بررسی قرار گرفت. در سن ۳۵ روزگی، وزن سینه هردو نژاد اندازه‌گیری شد. با توجه به نتایج بدست‌آمده، بیان ژن IGF-I در گروه‌های سبک‌وزن هر دو نژاد کمتر از مقدار آن‌ها در گروه‌های سنگین‌وزن مشاهده شد. گروه سنگین‌وزن بلدرچین نژاد مانچوری بیشترین مقدار بیان و گروه سبک‌وزن بلدرچین ژاپنی کمترین مقدار بیان IGF-I را به خود اختصاص دادند. بیشترین وزن عضله سینه در گروه سنگین‌وزن بلدرچین مانچوریا مشاهده شد. با توجه به این پژوهش می‌توان چنین نتیجه‌گیری کرد که ژن IGF-I یکی از ژن‌هایی است که بر سوخت و ساز بدن بلدرچین تأثیر دارد و می‌تواند روی سرعت رشد و افزایش وزن بلدرچین تأثیرگذار باشد؛ همچنین یکی از عواملی است که باعث تفاوت وزن در این دو نژاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Expression of IGF-I Gene in Breast Muscle and its Relation to Body Weight in Japanese Quail and Manchurian Breeds

نویسنده [English]

  • vahid bahrampour
Associate Professor, Department of Animal Science, Faculty of Agriculture, Technical and Vocational University (TVU), Kerman Branch, Iran.
چکیده [English]

In this study, 150 Manchurian and 150 Japanese quail breeds were used in a completely randomized block design to investigate the relationship between daily weight and IGF-I gene expression at 35 days of age in quail breast muscles. On the seventh day of rearing, quail chicks were weighed and each breed was divided into two groups: light and heavy. The amount of IGF-I gene expression was evaluated at 35 days old on the breast muscle by using Real-Time PCR. At 35 days old, breast weight was measured. The lowest IGF-I gene expression was indicated in the lightweight and heavyweight groups. The highest and lowest IGF-I gene expression occurred in the heavyweight group of the Manchurian quails and in the lightweight group of Japanese quails, respectively. The highest breast muscle weight was observed in the heavyweight group of Manchurian quails. According to this study, IGF-I gene can impact the metabolism of quail; so its expression can affect the growth rate and weight gain and is also one of the factors that results in weight difference between the two breeds.

کلیدواژه‌ها [English]

  • Manchuria quail
  • Japanese quail
  • IGF-I gene expression
  • Breast muscle
  • Real time PCR
References
[1] Gasparino, E., Guimarães, S., Neto, A. O., Martins, E., Lopes, P., Batista, E., & Vesco, A. (2012). The effect of glycerol on mRNA expression of growth hormone, insulin-like growth factor, and mitochondrial breast muscle genes of Japanese quail. British poultry science, 53(4), 497-507. https://doi.org/10.1080/00071668.2012.716507
[2] Lei, M., Nie, Q., Peng, X., Zhang, D., & Zhang, X. (2005). Single nucleotide polymorphisms of the chicken insulin-like factor binding protein 2 gene associated with chicken growth and carcass traits. Poultry Science, 84(8), 1191-1198. https:// doi.org/10.1093/ps/84.8.1191
[3] Sjögren, K., Liu, J.-L., Blad, K., Skrtic, S., Vidal, O., Wallenius, V., LeRoith, D., Törnell, J., Isaksson, O., Jansson, J.-O., & Ohlsson, C. (1999). Liver-Derived Insulin-Like Growth Factor I (IGF-I) Is the Principal Source of IGF-I in Blood but Is Not Required for Postnatal Body Growth in Mice. Proceedings of the National Academy of Sciences, 96(12), 7088-7092. https://doi.org/10.1073/pnas.96.12.7088
[4] Willemsen, H., Swennen, Q., Everaert, N., Geraert, P.-A., Mercier, Y., Stinckens, A., Decuypere, E., & Buyse, J. (2011). Effects of dietary supplementation of methionine and its hydroxy analog DL-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormone levels, and the redox status of broiler chickens exposed to high temperatures. Poultry Science, 90(10), 2311-2320.
[5] Yakar, S., Liu, J. L., Stannard, B., Butler, A., Accili, D., Sauer, B., & LeRoith, D. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7324-7329. https://doi.org/10.1073/pnas.96.13.7324
[6] De Antonio, J. (2010). Effect of temperature and feed restriction on performance, carcass composition and expression patterns of genes of the somatotrophic axis in broilers [Master Dissertation, Universidade Estadual Paulista, Faculty of Agrarian and Veterinary Sciences]. Jaboticabal, São Paulo, Brazil. https://repositorio.unesp.br/handle/11449/96608
[7] Wen, C., Jiang, X., Ding, L., Wang, T., & Zhou, Y. (2017). Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast-and slow-growing broilers. Scientific reports, 7(1), 1-7. https://www.nature.com/articles/s41598-017-02142-z
[8] Genchev, A., Mihaylova, G., Ribarski, S., Pavlov, A., & Kabakchiev, M. (2008). Meat quality and composition in Japanese quails. Trakia Journal of Sciences, 6(4), 72-82. http:// www.uni-sz.bg/tsj/TJS-Vol.6%20N4%202008/Genchev_kachestvoEn.pdf
[9] Oğuz, İ., Altan, Ö., Kirkpinar, F., & Settar, P. (1996). Body weights, carcase characteristics, organ weights, abdominal fat, and lipid content of liver and carcase in two lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four week body weight. British poultry science, 37(3), 579-588. https://doi. org/10.1080/00071669608417888
[10] Beccavin, C., Chevalier, B., Cogburn, L., Simon, J., & Duclos, M. J. (2001). Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate. Journal of Endocrinology, 168(2), 297-306.
[11] Berishvili, G., Shved, N., Eppler, E., Clota, F., Baroiller, J. F., & Reinecke, M. (2006). Organ-specific expression of IGF-I during early development of bony fish as revealed in the tilapia, Oreochromis niloticus, by in situ hybridization and immunohistochemistry: indication for the particular importance of local IGF-I. Cell Tissue Research, 325(2), 287-301. https://doi.org/10.1007/s00441-005-0133-9
[12] Guernec, A., Berri, C., Chevalier, B., Wacrenier-Cere, N., Le Bihan-Duval, E., & Duclos, M. J. (2003). Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield. Growth Hormone IGF Research, 13(1), 8-18. https://doi.org/10.1016/s1096-6374 (02)00136-3
[13] Edgar, R. (2004). Muscle: multiple with high accuracy and high throughput. Gene runner 4.0. 9.68 beta. Nucleic Acids Research, 32(5), 1792-1797. https://doi.org/1093/nar/gkh340
[14] Bottje, W. G., & Carstens, G. E. (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species. Journal of Animal Science, 87(14 Suppl), E48-63. https://doi.org/10.2527/jas.2008-1379
[15] Duclos, M. J. (2005). Insulin-like growth factor-I (IGF-1) mRNA levels and chicken muscle growth. Journal Physiol Pharmacol, 56 (Suppl 3), 25-35.
[16] Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36. https://doi.org/10.10 93/nar/30.9.e36
[17] Zhou, H., Mitchell, A. D., McMurtry, J. P., Ashwell, C. M., & Lamont, S. J. (2005). Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens1. Poultry Science, 84(2), 212-219. https://doi.org/10.1093/ps/84.2.212
[18] Butler, A. A., & LeRoith, D. (2001). Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology, 142(5), 1685-1688. https://doi.org/10.1210/endo.142.5.8148
[19] Velloso, C. P. (2008). Regulation of muscle mass by growth hormone and IGF-I. British Journal of Pharmacology, 154(3), 557-568. https://doi.org/10.1038/bjp.2008.153
[20] Boomgaardt, J., & Baker, D. H. (1973). Effect of age on the lysine and sulfur amino acid requirement of growing chickens. Poultry Science, 52(2), 592-597. https://doi.org/ 10.3382/ps.0520592
[21] Parvin, R., Mandal, A. B., Singh, S. M., & Thakur, R. (2010). Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). Journal Science Food Agriculture, 90(3), 471-481. https://doi.org/10.1002/jsfa.3841