بررسی ویژگی‌های فیزیکی و مکانیکی چوب کاج جنگلی کندسوز و ترمووود شده

نوع مقاله : مقاله پژوهشی (کاربردی)

نویسندگان

1 دانشجوی دکترا، گروه تکنولوژی و مهندسی چوب، دانشکده مهندسی چوب و کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

2 استادیار، گروه علوم و صنایع چوب، دانشکده مهندسی مواد و فناوری های نوین، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

چکیده

در پژوهش حاضر، ویژگی‌های فیزیکی و مکانیکی چوب کاج جنگلی (Pinus sylvestris L.) کندسوز و ترمووود شده بررسی شد. به این منظور، اشباع نمونه‌ها با محلول کندسوزکننده بوراکس با غلظت 7 درصد و به مدت 40 دقیقه و در فشار 4 بار انجام شد. تیمار حرارتی در دماهایC  170 وC  190 و به مدت 3 ساعت انجام شد. کیفیت سطح، تغییر رنگ و مقاومت برشی خط چسب نمونه‌ها بررسی شد. زبری سطح طبق استانداردISO-4287  و رنگ‌سنجی مطابق استانداردASTM D-2244  و با عوامل متغیر اشباع و دمای تیمار حرارتی انجام شد. مقاومت برشی خط چسب با عوامل متغیر اشباع، دمای تیمار حرارتی و نوع چسب، مطابق استاندارد ASTM D-905 انجام شد. نتایج نشان داد اشباع نمونه‌ها با کندسوزکننده بوراکس، موجب افزایش زبری سطح و تیمار حرارتی سبب کاهش زبری سطح گردید. با افرایش دمای تیمار حرارتی، زبری سطح کاهش یافت. در اثر افزایش دمای تیمار حرارتی، رنگ نمونه‌ها تیره‌تر شد. بیشترین تغییر رنگ در نمونه‌های کندسوز و ترمووود شده مشاهده شد. در اثر اشباع با بوراکس، مقاومت اتصال ضعیف شد. مقاومت برشی خط چسب در نمونه‌های کندسوز شده، بیشتر از نمونه‌های کندسوز و ترمووود شده بود. در نمونه‌های کندسوز و ترمووود شده، نسبت به ترمووودها مقاومت برشی خط چسب بیشتری، مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

A Study of the Physical and Mechanical Properties of Scots Pine Fire Retardant Treated Thermowood

نویسندگان [English]

  • Anooshe Fazeli 1
  • Aisona Talaei 2
1 PhD Student, Department of Wood Technology and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Assistant Professor, Department of Wood Science and Technology, Faculty of Materials Engineering and New Technologies, Shahid Rajaee Teacher Training University, Tehran, Iran.
چکیده [English]

In the present study, the physical and mechanical properties of fire retardant treated thermowood of scots pine (Pinus sylvestris L.) was evaluated. Specimens were impregnated with %7 solution of borax fire retardant for 40 minutes at the pressure of 4 bars. Heat treatments were carried out at temperatures of 170 C and 190 C for 3 hours. Surface quality, color change and glueline shear strength of specimens were verified. Surface roughness according to ISO-4287 and color change according to ASTM D-2244 were studied with variables of impregnation and heat treatment temperature. Glueline shear strength was measured according to ASTM D-905 with variables of impregnation, heat treatment temperature and resin type. Results indicated that borax fire retardant increased surface roughness while heat treatment decreased surface roughness. As heat treatment temperature increased, the surface roughness diminished. Color of specimens became darker as the temperature of heat treatment was raised. Fire retardant treated thermowood showed the most color change. Impregnating with borax weakened the bonding strength. Glueline shear strength in fire retardant treated specimens was higher than fire retardant treated thermowood. Fire retardant treated thermowoods displayed greater glueline shear strength than thermowoods.

کلیدواژه‌ها [English]

  • Thermowood
  • Fire retardancy
  • Surface roughness
  • Color changing
  • Glueline shear strength
References
[1] Kilic, M., Hiziroglu, S., & Burdurlu, E. (2006). Effect of machining on surface roughness of wood. Building and Environment, 41(8), 1074-1078. https://doi.org/10.1016/j.bu ildenv.2005.05.008
[2] Simsek, H., & Baysal, E. (2015). Some Physical and Mechanical Properties of Borate-Treated Oriental Beech Wood. Drvna Industrija, 66(2), 97-103. https://doi.org/10. 5552/drind.2015.1356
[3] Sandak, J., & Negri, M. (2005). Wood surface roughness–what is it Proceedings of the 17th International Wood Machining Seminar (IWMS 17).
[4] Čekovská, H., Gaff, M., Osvald, A., Kačík, F., Kubs, J., & Kaplan, L. (2017). Fire Resistance of Thermally Modified Spruce Wood. BioResources, 12(1), 947-959. https://doi.org/10.15376/biores.12.1.947-959
[5] Salman, S., Pétrissans, A., Thévenon, M. F., Dumarçay, S., Perrin, D., Pollier, B., & Gérardin, P. (2014). Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products, 72(3), 355-365. https://www. springerprofessional.de/en/development-of-new-wood-treatments-combining-bor o n-impregnation-/5063782
[6] Stark, N. M., White, R. H., Mueller, S. A., & Osswald, T. A. (2010). Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polymer Degradation and Stability, 95(9), 1903-1910. https://doi.org/10.1016/j.polymdegra dstab.2010.04.014
[7] Kartal, S. N., Hwang, W.-J., & Imamura, Y. (2007). Water absorption of boron-treated and heat-modified wood. Journal of Wood Science, 53(5), 454-457. https://doi.org /10.1007/s10086-007-0877-9
[8] Gurau, L., Irle, M., & Buchner, J. (2019). Surface roughness of heat treated and untreated beech (Fagus sylvatica L.) wood after sanding. BioResources, 14(2), 4512-4531. https://doi.org/10.15376/biores.14.2.4512-4531
[9] Karlinasari, L., Lestari, A. T., & Priadi, T. (2018). Evaluation of surface roughness and wettability of heat-treated, fast-growing tropical wood species sengon (Paraserianthes falcataria (L.) I.C.Nielsen), jabon (Anthocephalus cadamba (Roxb.) Miq), and acacia (Acacia mangium Willd.). International Wood Products Journal, 9(3), 142-148. https://doi.org/10.1080/20426445.2018.1516918
[10] Salca, E.-A., & Hiziroglu, S. (2014). Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials & Design (1980-2015), 62, 416-423. https://doi.org/10.1016/j.matdes.2014.05.029
[11] Aydin, I., & Colakoglu, G. (2005). Effects of surface inactivation, high temperature drying and preservative treatment on surface roughness and colour of alder and beech wood. Applied Surface Science - APPL SURF SCI, 252(2), 430-440. https:// doi.org/10.1016/j.apsusc.2005.01.022
[12] Ozdemir, T., Temiz, A., & Aydin, I. (2015). Effect of Wood Preservatives on Surface Properties of Coated Wood. Advances in Materials Science and Engineering, 2015(9), 631835-631840. https://doi.org/10.1155/2015/631835
[13] Ghofrani, M., & fazeli, A. (2019). The effect of lignocellulosic material and resin content on physical and mechanical properties of particleboard. Karafan Quarterly Scientific Journal, 16(45), 195-210. https://karafan.tvu.ac.ir/article_100539.html?lang=en
[14] Falkehag, S. I., Marton, J., & Alder, E. (1966, January 1). Chromophores in kraft lignin. In Lignin structure and reactions (Vol. 59, pp. 75-89). ACS Publications. https://doi.org/10.1021/ba-1966-0059.ch007
[15] Johansson, C., Saddler, J., & Beatson, R. (2000). Characterization of the Polyphenolics Related to the Colour of Western Red Cedar (Thuja plicata Donn) Heartwood. Holzforschung, 54(3), 246-254. https://doi.org/10.1515/HF.2000.042
[16] Gurleyen, L., Ayata, U., Esteves, B., & Cakicier, N. (2017). Effects of heat treatment on the adhesion strength, pendulum hardness, surface roughness, color and glossiness of Scots pine laminated parquet with two different types of UV varnish application. Maderas. Ciencia y tecnología, 19(2), 213-224. https://doi.org/10.4067/S0718-221X2017005000019
[17] Sundqvist, B. (2004). Colour changes and acid formation in wood during heating [PhD Dissertation, Lulea University of Technology]. Skellefta, Sweeden.
[18] Van Nguyen, T. H., Nguyen, T. T., Ji, X., & Guo, M. (2018). Predicting color change in wood during heat treatment using an artificial neural network model. BioResources, 13(3), 6250-6264. https://doi.org/10.15376/biores.13.3.6250-6264
[19] Sikora, A., Kačík, F., Gaff, M., Vondrová, V., Bubeníková, T., & Kubovský, I. (2018). Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of Wood Science, 64(4), 406-416. https://doi.org/10.1007/s10086-018-1721-0
[20] Sahin Kol, H., Aysal, S., Gündüz Vaydoğan, K., & Çıtak, O. (2017, October). Investigation of some physical and mechanical properties of heat treated Beech wood impregnated with boric acid and borax in different treatment temperatures Investigation of some physical and mechanical properties of heat treated Beech wood impregnated with boric acid and borax in different treatment temperatures, Barselona, Spain.  https://atif.sobiad.com/index.jsp?modul=makale-detay&Alan= fen&Id=AW4SDfkPyZgeuuwfeCdV
[21] Paul, W., Ohlmeyer, M., & Leithoff, H. (2007). Thermal modification of OSB-strands by a one-step heat pre-treatment - Influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz als Roh- und Werkstoff, 65(1), 57-63. https://doi.org/10.1007/s00107-006-0146-4
[22] Sernek, M., Boonstra, M., Pizzi, A., Despres, A., & Gérardin, P. (2008). Bonding performance of heat treated wood with structural adhesives. Holz als Roh-und werkstoff, 66(3), 173-180. https://doi.org/10.1007/s00107-007-0218-0
[23] Ulker, O., & Hiziroglu, S. (2017). Some Properties of Densified Eastern Redcedar as Function of Heat and Pressure. Materials,. 10(11), 1275. https://doi.org/10.3390/ma10111275
[24] Auty, D. (2011). Modelling the effects of forest management on the wood properties and branch characteristics of UK-grown Scots pine [PhD Dissertation, Aberdeen University]. Scotland, UK.
[25] TSE. (1996, November 25 ). TSE - TS 2471 - Wood, Determination of Moisture Content for Physical and Mechanical Tests. In: GlobalSpec Engineering 360.
[26] Aydin, I. (2010). Effects of borate treatments on the properties of spruce veneers and plywood panels. In Handbook on Borates: Chemistry, Production and Application (pp. 349-366). Nova Science Publishers.
[27] Togay, A., Kilic, Y., & Colakoglu, G. (2009). Effects of Impregnation with Timbercare Aqua to Surface Roughness of Some Varnishes. Journal of Applied Sciences, 9(9). https://doi.org/10.3923/jas.2009.1719.1725
[28] Tribulova, T., Kačík, F., Evtuguin, D., & Cabalova, I. (2016). Assesment of chromophores in chemically treated and aged wood by UV- Vis diffuse reflectance spectroscopy. Cellulose Chemistry and Technology, 50(5-6), 659-667. https://cellu losechemtechnol.ro/pdf/CCT5-6(2016)/p.659-667.pdf
[29] Yao, C., Yongming, F., Jianmin, G., & Houkun, L. (2012). Coloring characteristics of in situ lignin during heat treatment. Wood Science and Technology, 46(1), 33-40. https://doi.org/10.1007/s00226-010-0388-5
[30] Bekhta, P., & Niemz, P. (2003). Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. Holzforschung, 57(5), 539-546.  https://doi.org/10.1515/HF.2003.080
[31] Korkut, S., Akgül, M., & Dündar, T. (2008). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99(6), 1861-1868. https://doi.org/10.1016/j.biortech.2007.03.038
[32] Weiland, J., Guyonnet, R., & Gibert, R. (1998). Analysis of controlled wood burning by combination of thermogravimetric analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy. Journal of thermal analysis and calorimetry, 51(1), 265-274.
[33] Kartal, S. N., Hwang, W.-J., & Imamura, Y. (2008). Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. Journal of Materials Processing Technology, 198(1-3), 234-240. https://doi.org/10.1016/j.jmatprotec.2007.07.001
[34] Letibari, A. J. (2007). Science and technology of adhesion of lignocellulosic materials. Islamic Azad University (Karaj). http://fipak.areeo.ac.ir/site/catalogue/18478466
[35] Kúdela, J., & Liptáková, E. (2006). Adhesion of coating materials to wood. Journal of Adhesion Science and Technology, 20(8), 875-895. https://doi.org/10.1163/156856 106777638725
[36] Follrich, J., Müller, U., & Gindl, W. (2006). Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer. Holz als Roh- und Werkstoff, 64(5), 373-376. https://doi.org/10.1007/s00107-006-0107-y
[37] Boonstra, M. J., Tjeerdsma, B. F., & Groeneveld, H. A. C. (1998). Thermal Modification Of Non-durable Wood Species. 1. The Plato Technology: Thermal Modification Of Wood. IRG Secretariat. https://books.google.com/books?id=sonTzQEACAAJ
[38] Frazier, C. (2003). Isocyanate Wood Binders. In Handbook of adhesive technology (2nd ed.). Taylor & Francis. https://doi.org/10.1201/9780203912225.ch33
[39] Sandlund, A. B. (2004, October). A study of wood adhesion and interactions using DMTA. Doctoral thesis. Divisions of Wood Material Science [Doctoral Thesis, Division of Wood and Material Science, Lulea University of Technology]. Skellefta, Sweeden. https://www.traguiden.se/globalassets/forskning/doktorsavhan dlingar/ltu-dt-0449-se.pdf
[40] Frihart, C. R. (2003). Interaction of copper wood preservatives and adhesives 26th Annual Meeting of the Adhesion Society, Inc. : Adhesion. https://www.fs.usda.gov/ treesearch/pubs/22137
[41] Winandy, J. E. (1997). Effects of fire retardant retention, borate buffers, and redrying temperature after treatment on thermal-induced degradation. Forest Products Journal, 47(6), 79-86. https://www.fpl.fs.fed.us/documnts/pdf1997/winan97a.pdf